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Abstract. Scheduling appliances is a challenging and interesting prob-
lem aimed at reducing energy consumption at a residential level. Previous
work on appliance scheduling for smart homes assumes that user pref-
erences have no uncertainty. In this paper, we study two approaches to
address this problem when user preferences are uncertain. More specif-
ically, we assume that user preferences in turning on or off a device
are represented by Normal distributions. The first approach uses sample
average approximation, a mathematical model, in computing a schedule.
The second one relies on the fact that a scheduling problem could be
viewed as a constraint satisfaction problem and uses depth-first search
to identify a solution. We also conduct an experimental evaluation of the
two approaches to investigate the scalability of each approach in different
problem variants. We conclude by discussing computational challenges
of our approaches and some possible directions for future work.

Keywords: Smart Home Scheduling · Probabilistic user preference

1 Introduction

Demand Side Management (DSM) is a portfolio of measures to improve the
energy system at the consumption side. The initial goal of DSM is to cut the cost
or energy consumption from the power grid, and that goal is a well-studied sub-
ject in smart grids (Department of Energy and Climate Change 2009a; 2009b).
In recent years, with the rapid growth of technology and engineering such as
Internet of Things, smart devices and ubiquitous computing, appliances in a
household can communicate with each others. This creates a new environment
in which each appliance can be considered as an agent, and the team of agents
is able to collaborate to achieve a specific goal; for example, to execute a pre-
computed schedule of the appliances. It is not difficult to envision that in the near
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future, these agents can be controlled by a central server (or multiple servers)
that can generate schedules of the appliances on the fly to improve the users’
comfort while keeping energy consumption minimal.

In this paper, we aim at developing a scalable and efficient scheduling system
for smart homes. The main difference between the proposed system and contem-
porary ones (see Sect. 6 for a discussion of current approaches) lies in that the
former system will take user preferences into consideration under the assumption
that the preferences are uncertain. This assumption is realistic since, as shown
in the literature, user preferences could be approximately but not completely
learned (see, e.g., [6,13,14,16]).

The present work could be considered as bridging the preference elicitation
research and the development of smart home schedulers. This also provides a
core component for the development of a comprehensive energy management
system for smart grids in which individuals (e.g., homes, companies, etc.) can
control their own energy consumption and, at the same time, coordinate with
each other to lower the overall energy consumption, contributing to improved
sustainability.

The main contributions of this paper are the following: (i) We provide a
definition of a multi-objective Smart Home Scheduling Problem (SHSP) with
probabilistic user preferences; (ii) We propose two approaches to solve SHSP, one
based on Sample Average Approximation (SAA) and the other based on depth-
first search; (iii) We present an empirical evaluation of the two approaches. Our
empirical evaluation shows that the depth-first search based approach performs
better than the sampling-based approach and thus provides a viable system for
SHSP.

2 Smart Home Scheduling Problem

In this section, we define the Smart Home Scheduling Problem (SHSP) with
probabilistic user preferences and its solutions.

Definition 1. A scheduling problem P is a tuple 〈A,E, T,C, L,D〉, where
– A is a set of appliances (or devices), usually written as the set of integers

{1, . . . , |A|}.
– E = (e1, e2, ..., e|A|) is a vector of positive real numbers, where each ei repre-

sents the energy consumption of device i.
– T is a set of time slots, usually written as the set of integers {1, . . . , |T |}.
– C = (c1, c2, ..., c|T |) and L = (l1, l2, ..., l|T |) are vectors of non-negative real

numbers, where ci and li represent the cost of 1 kWh and the maximum
permissible load of all the devices at time i, respectively.

– D is an |A| × |A| matrix, called dependency matrix, each cell D(i, j) rep-
resents a hard constraint between devices i and j. The relations/constraints
can be one of the following types:

• before (resp. after) means that the device i must be turned on before
(resp. after) device j.
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• parallel (resp. not-parallel) means that the device i must run in parallel
(resp. must not run in parallel) with the device j.

• nil if the usage of the device i is independent from that of the device j.

Intuitively, a scheduling problem P represents the problem of when to turn
on devices. P is said to have no dependency if every element in D is nil. In
this paper, without the loss of generality, we will assume that each device in P
is turned on exactly once within |T | time slots. For simplicity of the presenta-
tion, we will also assume that each device is active for only one time slot. The
definitions and propositions in this paper can easily adapted for systems with
appliances that work in multiple time slots (e.g., the washing machine runs for
two hours) or need to be turn off (e.g., the light bulbs). Furthermore, we assume
that the matrix D is symmetric in the following sense: (i) If D(i, j) = before
(resp. D(i, j) = after), then D(j, i) = after (resp. D(j, i) = before); (ii) If
D(i, j) = parallel (resp. D(i, j) = not-parallel), then D(j, i) = parallel (resp.
D(j, i) = not-parallel); and (iii) If D(i, j) = nil, then D(j, i) = nil. A user
preference for a scheduling problem is defined as follows.

Definition 2. A probabilistic user preference over a scheduling problem
P = 〈A,E, T,C, L,D〉 is a tuple C = 〈N,α, β, λ〉, where

– N is an |A| × |T | matrix, called preference matrix, where each cell N(i, j)
is a Normal distribution N (μij , σij) representing the probability distribution
of the user’s preference in turning the device i on at time slot j.

– α, called the cumulative satisfaction threshold, is a number represent-
ing the minimum acquired cumulative preference required by a user from a
schedule.

– β is a number in the interval [0, 1] representing the probability threshold,
which indicates the threshold of the probability that α will be achieved given a
schedule in order for a user to accept that schedule.

– λ is a number indicating the cost threshold that a user could accept.

Table 1 presents an example of preference matrix for |A| = 4 and |T | = 3.
Scheduling problems with probabilistic preferences are defined next.

Definition 3. A Smart Home Scheduling Problem (SHSP) with probabilistic
user preferences (or p-scheduling problem, for short) is a pair (P, C), where P
is a scheduling problem and C is a probabilistic preference over P .

In this paper, for brevity, when we refer to SHSPs, we mean SHSPs with prob-
abilistic user preferences.

We next define the notions of a schedule for P and when a schedule for P
satisfies constraints in dependency matrix in D.

Definition 4. Given a scheduling problem P = 〈A,E, T,C, L,D〉, a schedule
for P is an |A| × |T | matrix H, where each cell H(i, j) is either 0 ( off) or 1
( on), representing the status of the device i at time slot j, and
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Table 1. An example of preference matrix N for |A| = 4 and |T | = 3. The two numbers
in each cell of the table represent the Normal distribution for user preference to turn
on an appliance at a time slot. For example, the preference to turn on device 1 at time
1 is N (10, 0.2).

Time slots

1 2 3

Appliances 1 10, 0.2 9, 0.1 6, 0.15

2 6, 0.01 8, 0.05 2, 0.78

3 6, 0.51 7, 0.2 7, 0.99

4 2, 0.41 6, 0.67 6, 0.09

– if D(i, j) = before, then H(i, t) = 1 implies that H(j, k) = 0 for every k ≤ t;
– if D(i, j) = after, then H(i, t) = 1 implies that H(j, k) = 0 for every k ≥ t;
– if D(i, j) = parallel, then H(i, t) = 1 implies that H(j, t) = 1; and
– if D(i, j) = not-parallel, then H(i, t) = 1 implies that H(j, t) = 0.

It is easy to see that the following observation holds under the assumption
that each appliance is turned on exactly once among |T | time slots.

Observation 1. For each schedule H of a problem P = 〈A,E, T,C, L,D〉
∀i ∈ [1, |A|] ,∃j ∈ [1, |T |] such that H(i, j) = 1

and ∀j1, j2 ∈ [1, |T |] ,H(i, j1) = H(i, j2) = 1 =⇒ j1 = j2.

Definition 5. The Normal distribution of a schedule H for a p-schedule
problem (P, C), with P = 〈A,E, T,C, L,D〉 and C = 〈N,α, β, λ〉, is defined by
NH(μH , σH) , where

– μH =
|A|∑

i=1

|T |∑

j=1

μij · H(i, j) and

– σH =
|A|∑

i=1

|T |∑

j=1

σij · H(i, j).

Intuitively, the distribution NH(μH , σH) represents the satisfactory of a user
given the schedule H. Given a schedule H of a problem P , we define:

– the total energy consumption of all appliances at a given time slot j as:

eH(j) =
|A|∑

i=1

ei · H(i, j). (1)

– the cost at a given time slot j is

cH(j) = cj · eH(j). (2)
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Recall that the complementary cumulative distribution function (ccdf) of a
real-valued random variable X is defined as FX(x) = Prob(X ≥ x). We thus
use FNH(μH , σH)(α) to represent the probability that the cumulative preference
acquired by schedule H is greater than or equal to a cumulative satisfaction
threshold α.

We are now ready to define the notion of satisfaction of a user preference by
a schedule.

Definition 6. Given a p-schedule problem P = (P, C), with P = 〈A,E, T,
C, L,D〉 and C = 〈N,α, β, λ〉 over P , a schedule H satisfies C if it meets the
following conditions:

– Power Safety:
∀j ∈ [1, |T |] , eH(j) ≤ lj . (3)

– User Preference:
FNH(μH , σH)(α) ≥ β. (4)

– Cost Efficiency:

fH
c =

|T |∑

j=1

cH(j) ≤ λ (5)

We say that a schedule H∗ is optimal if

H∗ = argmin
H∈H

|T |∑

j=1

cH(j) (6)

where H is the set of schedules satisfying Conditions (3), (4), and (5).

Intuitively, Condition (3) requires that at any given time slot j, the total energy
consumption of all appliances (i.e., eH(j)) is at most equal to the given maximum
load (i.e., lj). Condition (4) states that the probability in which the cumulative
preference acquired by H meets the cumulative satisfaction threshold (i.e., that
accumulate preference is at least α) is at least β. Finally, Condition (5) indicates
that the cost of the schedule must be at most λ.

In the next sections, we propose two methods to solve the SHSP. The first
method is based on Sample Average Assumption (SAA) and the second method
is based on depth-first search.

3 Solving SHSPs Using Sample Average Approximation

Sample Average Approximation (SAA) [5] is a method to solve an optimization
problem of the form

min
x∈Θ

f̃(x), (7)
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where Θ ⊆ R
d (d < ∞) and the real-valued function f̃(·) cannot be computed

exactly, but can be estimated through a (stochastic) simulation.
Throughout this section, (P, C) denotes a p-scheduling problem, where P =

〈A,E, T,C, L,D〉 is a scheduling problem and C = 〈N,α, β, λ〉 is a constraint
over P .

Observe that in SHSPs, if the user preferences are deterministic (i.e., each
cell of the matrix N is a real number), then a schedule that maximally satisfies
the user preferences can be easily computed (e.g., as proposed in [18]). So, one
way to use SAA in computing a solution of a SHSP P = (P, C) is to randomly
generate deterministic samples from the given P, compute their solutions, and
take the average of these solutions as the solution of P. From this realization, in
order to solve a SHSP using SAA approach, we aim at formalizing the SHSP as a
Mixed Integer Linear Programming (MILP). We start with some extra notations.

Definition 7. Let N be a preference matrix of the size |A| × |T |. A sample
of N is an |A| × |T | matrix where the cell (i, j) is a value generated from the
Normal distribution N (μij , σij).

Given a sample and a schedule, the projection of the schedule on the sample is
defined as follows.

Definition 8. Let s be a sample matrix of N . The projection of a schedule H
on s, denoted by H, is an |A| × |T | matrix, where, for each cell (i, j)

H(i, j) =
{

s(i, j) if H(i, j) = 1
0 otherwise (8)

Definition 9. Let s be a sample matrix of N . The cumulative preference of
a schedule H in s, denoted by Cs, is defined by

Cs =
|A|∑

i=1

|T |∑

j=1

H(i, j). (9)

We define the indicator function for a sample s as follows.

f(s) =
{

1 if Cs ≥ α
0 otherwise (10)

Let n be an integer and S = {sk}n
k=1 be a sequence of samples of N . A schedule

H is said to satisfy the user preference condition in S if

n∑

k=1

f(sk) ≥ β × n

100
(11)
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The above allows us to transform a p-scheduling problem P = (P, C) to a
MILP,1 denoted as program Π:

S = {sk}n
k=1 is a sequence of n samples of N

maximize
n∑

k=1

f(sk) subject to

|T |∑

j=1

H(i, j) = 1 ∀i = 1, ..., |A| (from Definition 4)

e(j) ≤ lj ∀j = 1, ..., |T | (from Eq. 3)
|T |∑

j=1

c(j) ≤ λ (from Eq. 5)

|A|∑

i=1

|T |∑

j=1

H(i, j) · sk(i, j) ≥ α ∀k = 1, ..., n

n∑

k=1

f(sk) ≥ β × n

100
(from Eq. 11)

4 Solving SHSP Using Depth-First Search

In this section, we propose an approach to solving p-scheduling problems using
depth-first search (DFS).2 As in the previous section, P = (P, C) denotes a p-
scheduling problem, where P = 〈A,E, T,C, L,D〉 is a scheduling problem and
C = 〈N,α, β, λ〉 is a preference over P . Due to Observation 1, we can view P
as a Constraint Satisfaction Problem (CSP), denoted by csp(P), whose set of
variables H̃1, . . . , H̃|A| and the domain of each variable is {1, . . . , |T |}. Intuitively,
each variable H̃i encodes a schedule of the appliance i. It is easy to see that
there is a one-to-one correspondence between a complete variable assignment
H̃ = {H̃i = vi | i = 1, . . . , |A|} of csp(P) and a schedule H of P defined by

H(i, j) = 1 iff H̃i = j. (12)

For this reason, we often use H and H̃ interchangeably. We will begin with a
theorem that helps in choosing the value of a variable in the expansion phase as
well as pruning the search tree.

1 Our proposed transformation from a p-scheduling problem P = (P, C) to a MILP
does satisfy Conditions (3), (4), and (5), but ignores the dependency matrix D in
P . We leave a proposal for a complete transformation for future work.

2 One could also use other search algorithms as well because our core contribution
here is to formulate the problem into a search problem and propose a number of
pruning conditions that can be used with any search strategy.
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Theorem 1. Let N (μ1, σ1),N (μ2, σ2), ...,N (μn, σn) be the Normal distribu-
tions of the random variables x1, x2, ..., xn, respectively, α be a number, and

K ∈ [1, n]. Then, the probability xK ≥ α is maximal when
μK − α

σK
is maximal

among
μ1 − α

σ1
, . . .,

μn − α

σn
.

Proof. Denote φ(ξ) = Prob(x < ξ) for a standard Normal distribution. It holds
that

Prob(N (μK , σK) ≥ α) = Prob(σKN (0, 1) + μK ≥ α)

= Prob
(
N (0, 1) ≥ α − μK

σK

)
= 1 − φ

(α − μK

σK

) (13)

This implies that:

max
K

(Prob(N (μK , σK) ≥ α)) ⇔ max
K

(
1 − φ

(α − μK

σK

))

⇔ min
K

(
φ
(α − μK

σK

))

⇔ min
K

(α − μK

σK

)

⇔ max
K

(μK − α

σK

)

(14)

How can Theorem 1 help us in searching for a schedule? Observed that if we were
to use DFS to solve the CSP of P, then each possible solution H corresponds to
a complete assignment of the variables H̃i (1 ≤ i ≤ |A|). So, Theorem 1 indicates
that the schedule H with N (μH , σH) that has large μH and small σH has the
best chance to satisfy the user preferences than other schedules. More precisely,
from Eqs. 4 and 13, we have the following:

FN (μH , σH)(α) ≥ β ⇔ Prob(N (μH , σH) ≥ α) ≥ β

⇔ 1 − φ(
α − μH

σH
) ≥ β ⇔ φ(

α − μH

σH
) ≤ 1 − β

(15)

Consider a partial assignment H̃ ′ and assume that H̃ is a completion of H̃ ′, i.e.,
H̃ ′ ⊆ H̃. Let

μmax
˜H′ =

∑

˜Hi=vi∈ ˜H′

μ(i, vi) +
∑

˜Hi=vi∈ ˜H\ ˜H′,i �=k

max
j=1,...,|T |

μ(i, j) (16)

σmax
˜H′ =

∑

˜Hi=vi∈ ˜H′

σ(i, vi) +
∑

˜Hi=vi∈ ˜H\ ˜H′

max
j=1,...,|T |

σ(i, j) (17)

Assume that H is the schedule equivalent to H̃ as defined in (12). Clearly,

μmax
˜H′ ≥ μH and σmax

˜H′ ≥ σH (18)
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Therefore,
α − μmax

˜H′

σmax
˜H′

≤ α − μH

σH
(19)

which implies

1 − φ
(α − μmax

˜H′

σmax
˜H′

)
≥ 1 − φ

(α − μH

σH

)
(20)

That leads to the following theorem, which is also the pruning condition
based on user preference.

Theorem 2. Assuming that H̃ ′ is a partial assignment of the variables in the
CSP of a p-scheduling problem P. If

1 − φ
(α − μmax

˜H′

σmax
˜H′

)
< β

and H̃ is a completion assignment such that H̃ ′ ⊆ H̃, then the schedule H
corresponding to H̃ does not satisfy Condition (4).

Theorem 2 can then be used to eliminate a partial assignment H̃ ′ from consider-
ation in the search for a solution. This is used in the algorithm that we present
next.

Given a problem P = 〈A,E, T,C, L,D〉, we say that the number of depen-
dencies of an appliance i, denoted by d(i), is the number of elements in row i
of D whose value differs from nil. Without loss of generality, we will assume
that the appliances in A are listed in decreasing order of dependencies, i.e., if
1 ≤ i < j ≤ |A|, then d(i) ≥ d(j). For a partial assignment H̃ ′, let

cost(H̃ ′) =
∑

˜Hi=vi∈ ˜H′

cvi
·
⎛

⎝
|A|∑

i=1

ei × |{i | H̃t = vi ∈ H̃ ′}|
⎞

⎠

Notice that cost(H̃ ′) is the energy consumption of all appliances specified by H̃ ′.
Due to the space limitation, we will only present the algorithm for computing
an optimal solution for a p-scheduling problem P = (P, C).

In Algorithm 1, the function ok(H̃) returns false if one of the following
conditions is satisfied: (i) cost(H̃) > λ (cost efficiency requirement violated);
(ii) the dependencies among current scheduled appliances do not satisfy the
conditions in Definition 4 (dependency violated); and (iii) 1 − φ

(
α−μmax

˜H

σmax
˜H

)
< β

(user preference violated).
Intuitively, Algorithm 1 implements DFS by selecting a time slot for an

appliance in each iteration of the overall while-loop (Lines 6–36), in the order
1, . . . , |A|. If all the time slots of the first appliance have been considered, then
the search is complete (Line 8–10). For each device, the algorithm starts with
the time slot whose preference distribution has maximal mean over other time
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slots that have not been considered (Line 18–19). When a time slot is assigned
to an appliance, the algorithm uses Theorem 2 and other checks (ok(.)) to rule
out whether the search should be continued or backtracked (the loop command,
Lines 21–23) for a different time slot of the appliance or the previous appli-
ance (Lines 21–23). When a backtrack to the previously considered appliance
(Lines 11–17), the assignment of the current appliance is removed from the
schedule and its set of time slots is reseted to false (Lines 12–15). If all appli-
ances have been assigned some time slots, then we need to check whether the
generated schedule satisfies the user preference and optimal (Lines 26–30).

Observe that if we add “return H̃” to Line 29 of Algorithm 1, then it
returns the first satisfiable schedule. Furthermore, additional bookkeeping on
the dependencies (e.g., removing all time slots that violate the dependencies
in the schedule from the set c(i)) could help prune certain selections. We did
implement this measure in our implementation. Due to the verifications in Lines
21 and 26, it is easy to see that the following theorem holds.

Theorem 3. Algorithm 1 is sound and complete.

5 Experiments

We performed an empirical evaluation of the two proposed methods (labeled
DFS and SAA) on randomly-generated problems (i.e., problems with randomly-
generated energy consumption vectors E and preference matrices N).

We implemented DFS method using Python, and we used Matlab Release
2017a, for SAA method, to solve the mixed integer linear programming proposed
in program Π. The number of samples in SAA is 100. In our experiments, we
investigate the runtime and success rates of the two approaches in the following
four SHSP variants:

– Variant 1 : There are 10 dependencies between the appliances and the goal is
to find a satisfiable solution.

– Variant 2 : All appliances are independent from each other and the goal is to
find a satisfiable solution.

– Variant 3 : There are 10 dependencies between the appliances and the goal is
to find an optimal solution.

– Variant 4 : All appliances are independent from each other and the goal is to
find an optimal solution.

For each variant, we generated problems varying the number of appliances
|A| = 20, 25, 30, . . . , 65, set the horizon |T | = 24, and set α = 6.5 · |A| and
β = 0.8. Finally, we use costs from the literature [12].

We set a time limit of 10 min and 1 hour for problems whose goal is to
find satisfiable and optimal solutions, respectively, and we report average run-
times and success rates (=number of instances successfully solved) of the two
approaches.
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Input : A p-scheduling problem P = (P, C)
Output: An optimal schedule of P

1 optimalValue = +∞
2 optimalCandidate = nil

3 Let ˜H = ∅
4 Let checked be a Boolean |A| × |T | matrix, initialized with false
5 i = 1
6 while true do
7 Let c(i) = {k | checked(i, k) = false}
8 if c(i) = ∅ ∧ i = 1 then
9 break

10 end
11 if c(i) = ∅ ∧ i > 1 then
12 Set checked(i, k) = false for k = 1, . . . , |T |
13 Identify x such that ˜Hi = x belongs to ˜H

14 ˜H = ˜H \ { ˜Hi = x}
15 i = i − 1
16 loop

17 end
18 Let j ∈ c(i) such that μ(i, j) = maxk∈c(i) μ(i, k)
19 checked(i, j) = true

20 ˜H = ˜H ∪ { ˜Hi = j}
21 if ¬ok( ˜H) then
22 loop
23 end
24 if i = |A| then
25 Let H be the schedule correspond to ˜H

26 if FNH(μH , σH )(α) ≥ β ∧ fH
c < optimalValue then

27 optimalCandidate = ˜H

28 optimalValue = fH
c

29 % return ˜H if only satisfiable schedule is needed

30 end

31 Identify x such that ˜Hi = x belongs to ˜H

32 ˜H = ˜H \ { ˜Hi = x}
33 else
34 i = i +1
35 end

36 end
37 if optimalCandidate = nil then
38 return no optimal schedule found
39 end
40 return optimalCandidate;

Algorithm 1: Computing an Optimal Schedule for P = (P, C)

Figure 1 shows the runtimes (in seconds) and Table 2 tabulates the success
rates (in percentages) of the two approaches on the four variants. We only ran
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SAA for Variant 2 because our formulation does not take into account depen-
dencies between appliances (and is thus inapplicable for Variants 1 and 3) and
it is not guaranteed to find optimal solutions since it is an approximation app-
roach (and is thus inapplicable for Variants 3 and 4). Results for the number
of appliances |A| > 35 for Variants 3 and 4 are not shown because none of the
approaches successfully solved a single instance for those large problems within
the time limit.

The results show that DFS is faster than SAA in Variant 2 and, thus, it
is more scalable than SAA. In Variants 1 and 2, DFS maintains acceptable
runtimes of within 40 seconds and success rates of approximately 80%. Not
surprisingly, DFS is slower when solving the optimization problems of Variants 3
and 4 compared to the satisfaction problems of Variants 1 and 2. Similarly, DFS
also has smaller success rates on the optimization problems.

Fig. 1. Average runtimes of solved instances (in seconds)
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6 Related Work

In the literature, existing works to solve SHSPs can be divided into three cate-
gories: mathematical optimization, meta-heuristic search and heuristic search [2].
Between these three categories, most of the work is in mathematical opti-
mization, especially ones using MILP-based approaches. Some recent works
[1,3,10,12] used MILP, while others have formulated the problem in convex pro-
gramming [17] and quadratic programming [15] in which the cost or the energy
consumption function is optimized. To a certain extent, our proposed SAA model
can be considered as the first work that applies SAA mathematical model into
solving SHSPs.

Table 2. Success rates (in percentages)

Variant Approach Number of appliances |A|
20 25 30 35 40 45 50 55 60 65

1 DFS 75 79 84 80 83 72 85 79 81 81

2 DFS 100 100 100 100 100 100 100 100 100 100

SAA 100 100 100 100 100 95 86 81 69 46

3 DFS 42 25 14 5 0 0 0 0 0 0

4 DFS 35 23 15 7 0 0 0 0 0 0

There exist also several studies in applying search techniques in managing
residential energy usage [4,7,9]. For example, Misra et al. presented a scheduling
mechanism based on Markov Decision Processes (MDPs) for reducing energy
expenses, which differs from our approach as we do not use MDPs [9]. Our work
is similar to the work by Lee et al. [7], where they introduced a backtracking-
based scheduling approach. The key differences between their work and ours
are the following: (i) They do not take into account user preferences; (ii) Their
objective is to reduce the peak energy load of homes or buildings, while ours is
to minimize the cost of energy usage while satisfying user preference threshold.

Another work that is worth mentioning is the one by Fioretto et al. [4], where
the authors described a mapping of SHSPs to distributed constraint optimization
problems and proposed a distributed algorithm to solve it. The key difference
between their work and ours is that they solve the bi-objective optimization
problem by minimizing the weighted sum of both energy cost and user discomfort
(opposite of user preference). Instead, we seek to only minimize energy cost while
ensuring that the user preference (or user discomfort) is within some acceptable
threshold.

With respect to the last general area of meta-heuristic search, researchers
have proposed a scheduling method using genetic algorithm [8] and studied the
application of particle swarm optimization [11] in determining a near-optimal
solution for a multi-objective optimization problem like SHSPs.
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7 Conclusions and Future Work

In this paper, we introduced two approaches to solve the smart home schedul-
ing problem with probabilistic user preferences. More precisely, we consider the
scheduling problem when user preferences for using (turning on/off) a device are
Normal distributions. The first approach relies on sample average approximation
(SAA) and the second approach uses depth-first search (DFS). We also propose
pruning strategies, which we applied to our DFS algorithm. As these strategies
are general for search-based approaches, they can also be applied to other heuris-
tic search approaches aside from DFS. Our experimental results show that DFS
is faster and scales better than SAA.

Future work includes more comprehensive evaluations, where we vary the α
and β parameters of DFS and SAA as well as the degree of dependencies of the
devices. We also plan to investigate improved optimization techniques for SAA.
Finally, we also plan to consider an online extension of the problem, where some
subset of preferences are elicited and schedules are provided in a repeated and
interactive manner with users.
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